Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology


P. Lochyński, E. Chlebus, E. Łyczkowska, G. Nawrat, Comparison of electropolished 316L steel samples manufactured by SLM and traditional technology, Rapid Prototyping Journal 25 (3), (2018) 566-580.

Lochyński P., Chlebus E., Łyczkowska E., Nawrat G.,


Purpose This paper aims to present the way of modifying surfaces of 316L stainless steel elements that were manufactured in the selected laser melting (SLM) technology and then subjected to mechanical and electrolytic processing (electropolishing [EP]). The surface of the as-generated and commercial produced parts was modified by grinding and EP, and the results were compared. The authors also present an example of the application of EP for the final processing of a sample technological model – an initial prototype of a 316L steel implant manufactured in the SLM technology. Design/methodology/approach The analyzed properties included surface topography, roughness, resistance to corrosion, microhardness and the chemical composition of the surface before and after EP. The roughness described with the Ra, Rt and Rz was determined before and after EP of samples manufactured from 316L steel with use of traditional methods and additive technologies. Findings EP provides us with the opportunity to process elements with a complex structure, which would not be possible with use of other methods (such as milling or grinding). Depending on the expected final surface of elements after the SLM process, it is possible to reduce the surface roughness with the use of EP (for t = 20 min, Ra = 3.53 +/- 0.37 mu m and for t = 40 min, Ra = 3.23 +/- 0.22 mu m) or mechanical processing and EP (for t = 4 min, Ra = 0.13 +/- 0.02 mu m). The application of the EP method to elements made from 316L steel, in a bath consisting of sulfuric acid (VI), H2SO4 (35 Vol.%), phosphoric acid (V), H3PO4 (60.5 Vol.%) and triethanolamine 99 per cent (4.5 Vol.%), allows us to improve the surface smoothness and to obtain a value of the Ra parameter ranging from 0.11 to 0.15 mu m. The application of a current density of 20 A/dm2 and a bath temperature of 55oC results in an adequate smoothing of the surface (Ra < 0.16 mu m) for both cold rolled and SLM elements after grinding. The application of EP, to both cold rolled elements and those after SLM, considerably improves the resistance to corrosion. The results of potentiodynamic corrosion resistance tests (jkor, EKA and Vp) of the 316L stainless steel samples demonstrate that the values of Vp for elements subjected to EP (commercial material: 1.3 center dot 10-4 mm/year, SLM material: 3.5 center dot 10-4 mm/year) are lower than for samples that were only ground (commercial material: 4.0 center dot 10-4 mm/year, SLM material: 9.6 center dot 10-4 mm/year). The microhardness was found to be significantly higher in elements manufactured using SLM technology than in those cold rolled and ground. The ground 316L steel samples were characterized by a microhardness of 318 HV (cold rolled) and 411 HV (SLM material), whereas the microhardness of samples subjected to EP was 230 HV (commercial material) and 375 HV (SLM material). Originality/value The 316L samples were built by SLM method. The surface of the SLM samples was modified by EP. Surface morphological changes after EP were studied using optical methods. Potentiodynamic tests enabled to notice changes in the corrosion resistance of 316L. Microhardness results after electropolished 316L stainless steel were shown. The chemical composition of 316L surface samples was presented. The smoothening of the surface amounted to Ra = 0.16 mu m.





The Faculty of Environmental Engineering and Geodesy

Institute of Environmental Engineering

Wrocław University of Environmental and Life Sciences

pl. Grunwaldzki 24,
50-363 Wrocław

Project assumptions

The overall goal of the project is to develop an innovative multifactor mathematical model enabling monitoring of bath contamination used in the electropolishing process of austenitic stainless steels. This model will allow optimization and reduction of process costs and will have an impact on reducing environmental pollution during electrolytic polishing of austenitic stainless steels.

The final outcome of the project will consist in the development of a method of monitoring the gradual contamination of the electropolishing bath.


The team deals with research in the field of electrochemistry, wastewater treatment, monitoring and optimization of processes in laboratory and industrial conditions. The diverse experience of individual members of the IonsMonit team is its strength.



Project: “A pioneering model for monitoring pollution of electropolishing process baths (IonsMonit)” financed by the National Center for Research and Development as part of the Lider programme.