Algae proliferation on substrates immersed in biologically treated sewage

QUOTING:

P. Wiercik, T. Garbowski, K. Pulikowski, A. Bawiec, Algae proliferation on substrates immersed in biologically treated sewage, Journal of Ecological Engineering 18 (1), (2017) 90-98. doi:10.12911/22998993/66253
Wiercik P., Garbowski T., Pulikowski K., Bawiec A.,

Abstract

Due fast biomass production, high affinity for N and P and possibilities to CO2 sequestration microalgae are currently in the spotlight, especially in renewable energy technologies sector. The majority of studies focus their attention on microalgae cultivation with respect to biomass production. Fuel produced from algal biomass can contribute to reducing consumption of conventional fossil fuels and be a remedy for a rising energy crisis and global warming induced by air pollution. Some authors opt for possibilities of using sewage as a nutrient medium in algae cultivation. Other scientists go one step further and present concepts to introduce microalgal systems as an integral part of wastewater treatment plants. High costs of different microalgal harvesting methods caused introduction of the idea of algae immobilization in a form of periphyton on artificial substrates. In the present study the attention has focused on possibilities of using waste materials as substrates to proliferation of periphyton in biologically treated sewage that contained certain amounts of nitrogen and phosphorus.

Contact

 

 

 

The Faculty of Environmental Engineering and Geodesy

Institute of Environmental Engineering

Wrocław University of Environmental and Life Sciences

Address:
pl. Grunwaldzki 24,
50-363 Wrocław

Project assumptions

The overall goal of the project is to develop an innovative multifactor mathematical model enabling monitoring of bath contamination used in the electropolishing process of austenitic stainless steels. This model will allow optimization and reduction of process costs and will have an impact on reducing environmental pollution during electrolytic polishing of austenitic stainless steels.

The final outcome of the project will consist in the development of a method of monitoring the gradual contamination of the electropolishing bath.

Team

Zespół zajmuje się badaniami z zakresu elektrochemii, oczyszczania ścieków, monitoringu i optymalizacji procesów w warunkach laboratoryjnych i przemysłowych.

Zróżnicowane doświadczenie poszczególnych członków zespołu IonsMonit jest jego siłą.

 


 

Project: “A pioneering model for monitoring pollution of electropolishing process baths (IonsMonit)” financed by the National Center for Research and Development as part of the Lider programme.

TOP